Reactive power control in photovoltaic systems through (explainable) artificial intelligence

نویسندگان

چکیده

Across the world, efforts to support energy transition and halt climate change have resulted in significant growth of number renewable distributed generators (DGs) installed over last decade, among which photovoltaic (PV) systems are fastest growing technology. However, high PV penetration electricity grid is known lead numerous operational problems such as voltage fluctuations line congestions, could be eased by utilizing reactive power capability systems. To this end, we propose use artificial neural network (ANN) predict optimal dispatch learning approximate input–output mappings from AC flow (ACOPF) solutions either a centralized or decentralized manner. In case control, leverage Shapley Additive Explanations (SHAP), an explainable intelligence (XAI) technique, identify non-local state measurements significantly influence each individual system. Both ANN-based controllers evaluated through study based on CIGRE medium-voltage distribution compared baseline control strategies. Results show that both exhibit superior performance, hindering congestions encountered with strategies while recording saving 0.44% fixed factor control. By leveraging ANN SHAP, proposed for able achieve ACOPF-level performance promoting data privacy reducing computational burden.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Building Explainable Artificial Intelligence Systems

As artificial intelligence (AI) systems and behavior models in military simulations become increasingly complex, it has been difficult for users to understand the activities of computer-controlled entities. Prototype explanation systems have been added to simulators, but designers have not heeded the lessons learned from work in explaining expert system behavior. These new explanation systems a...

متن کامل

Explainable Artificial Intelligence for Training and Tutoring

This paper describes an Explainable Artificial Intelligence (XAI) tool that allows entities to answer questions about their activities within a tactical simulation. We show how XAI can be used to provide more meaningful after-action reviews and discuss ongoing work to integrate an intelligent tutor into the XAI framework.

متن کامل

Explainable Artificial Intelligence via Bayesian Teaching

Modern machine learning methods are increasingly powerful and opaque. This opaqueness is a concern across a variety of domains in which algorithms are making important decisions that should be scrutable. The explainabilty of machine learning systems is therefore of increasing interest. We propose an explanation-byexamples approach that builds on our recent research in Bayesian teaching in which...

متن کامل

Automated Reasoning for Explainable Artificial Intelligence

Reasoning and learning have been considered fundamental features of intelligence ever since the dawn of the field of artificial intelligence, leading to the development of the research areas of automated reasoning and machine learning. This paper discusses the relationship between automated reasoning and machine learning, and more generally between automated reasoning and artificial intelligenc...

متن کامل

emittance control in high power linacs

چکیده این پایان نامه به بررسی اثر سیم پیچ مغناطیسی و کاوه یِ خوشه گر با بسامد رادیویی بر هاله و بیرونگراییِ باریکه هایِ پیوسته و خوشه ایِ ذرات باردار در شتابدهنده های خطیِ یونی، پروتونی با جریان بالا می پردازد و راه حل هایی برای بهینه نگهداشتن این کمیتها ارایه می دهد. بیرونگرایی یکی از کمیتهای اساسی باریکه هایِ ذرات باردار در شتابدهنده ها است که تاثیر قابل توجهی بر قیمت، هزینه و کاراییِ هر شتابدهند...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Energy

سال: 2022

ISSN: ['0306-2619', '1872-9118']

DOI: https://doi.org/10.1016/j.apenergy.2022.120004